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NONLINEAR ANALYSIS OF RELATIVISTIC HARMONIC GENERATION BY

INTENSE LASERS IN PLASMAS

I. INTRODUCTION

The interaction of ultra-intense laser pulses in plasmas is rich in a variety of phenom-

ena [1]-[22]. These phenomena have gained particular relevance due to the development

of compact lasers which produce ultrashort pulses (:5 1 ps) at ultrahigh powers (Q 1 TW)

and intensities (Ž 1018 W/cm 2 ) [2], [231. For example, the production of harmonic ra-

diation may occur by several mechanisms. At modest intensities, lasers interacting with

neutral gases have been observed to produce coherent harmonic radiation at well past the

5 3 "t harmonic due to atomic effects [13]. At ultrahigh intensities, a gas is readily ionized

and the effects of the free plasma electrons become exceedingly important. The ioniza-

tion process itself results in electron currents which can produce harmonic radiation [14],

[15]. In a fully ionized plasma, harmonics can be produced by (i) relativistic harmonic

generation in the forward direction (the propagation direction of the incident laser) [1], [8),

[17]-[20], (ii) stimulated backscattered harmonic generation [1], [21] and (iii) incoherently,

by nonlinear Thomson scattering [1], [221. Recent experiments on these processes have also

been perfoi-,ed [2], {15J-[18]. This paper discusses the details of process (i), relativistic

harmonic generation in fully ionized plasmas. The growth, dephasing and saturation of

the harmonics will be analyzed.

An intense laser field interacting with a plasma induces transverse currents associated

with the quiver motion of the electrons. For ultrahigh intensities and linear polarizations,

the induced plasma current becomes highly relativistic and nonlinear, resulting in the

generation of coherent harmonic radiation in the forward direction (see Fig. 1). The

transverse quiver momentum, p9, of an electron in a 1D laser field is given by pq = m0 ca 0 ,

where a0 = eAo/moc 2 is the normalized vector potential of the incident laser field. The

quiver velocity, Vq, is given by Vq = cao /7±, where y± -L (1 + a2o )1/2 is the relativistic factor

associated with the transverse electron motion. Consider a linearly polarized incident

laser field of the form ao(z,t) = &g cos8 0 e., where 0o = koz - wot and k0 and w0 are the

wavenumber and frequency of the incident laser field, respectively. In the mildly relativistic

limit, a02 < 1, the quiver velocity is sinusoidal. At ultrahigh intensities, a0 > 1, the quiver

velocity contains a spectrum of harmonic components. This nonlinear electron quiver

motion leads to the generation of relativistic harmonic radiation [1], [8], [17]-[20]. The
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laser strength parameter, &o, is related to the intensity, Io, of the incident laser field by

-• 8.5 × lO-l°o[,mIo/ 2 [W/cm2 ], (1)

and to the laser power, PO, by PO[GW] = 21.5(a0ro/A 0)2 where ro is the spot size of the

Gaussian transverse profile and A0 = 27r/ko is the incident laser wavelength. For A0 L-

1 prm, ultrahigh intensities I0 Z 1018 W/cm2 imply Z0 > 1 and, hence, highly nonlinear

and relativistic electron motion. Such intensities are currently available from compact

laser systems based on the method of chirped-pulse amplification [2], [23].

Relativistic harmonic generation was first described and analyzed by Sprangle, et al.

[8). In Ref. [81, the independent variables C = z - ct and r = t were used along with a

quasi-static plasma response. Expressions were derived for the growth of the harmonic

radiation in the linear regime in which the harmonic field amplitude is proportional to the

laser-plasma interaction distance, L. These expressions are valid for interaction distances

less than the phase detuning length, c-rd. Use of the variables C, T along with the quasi-

static approximation is not adequate to accurately describe saturation of the relativistic

harmonics by phase detuning. More recently, by using the variables ý = z - vplt and

r = t, where vph is the phase velocity of the incident laser field, along with the quasi-

static plasma response, the authors accurately analyzed the saturation of the relativistic

harmonics by phase detuning [1]. Independent analyses of saturation of the third harmonic

by phase detuning have also been recently performed [191, [20].

This paper is organized as follows. The remainder of the introduction describes the

basic physics of third harmonic generation using a simplified 1D model in the mildly

relativistic limit, &02 <- 1. The importance of collective, space-charge and detuning effects

are discussed. It is shown that the self-consistent plasma density response significartly

reduces the source current driving the harmonic radiation. Phase detuning places a severe

limit on the growth of the harmonic radiation. In Section II, a 1D nonlinear model valid for

ultrahigh intensities, &42 _ 1, is formulated and used to study the generation of coherent

radiation at odd harmonics. A general expression for the nonlinear index of refraction

and the dispersion relation for a laser field in the limit &;2 > 1 is presented. The collective

plasma response is included self-consistently and the saturation amplitude of the harmonics
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by phase detuning is calculated. This is done in the long pulse limit, c-rL > AP, where

TrL is the incident laser pulse duration and A, = 27rc/wp, where wp is the electron plasma

frequency. For a 'rL = 1 psec laser pulse, cTL > A, implies no > 1016 cm-3 , where no

is the ambient plasma density. In Section III, the effects of diffractive spreading of the

radiation fields are determined using a 3D model in the mildly relativistic limit, a0 < 1.

Third harmonic generation from semi-infinite and finite slab plasmas are analyzed. The

effects of transverse gradients in the initial plasma density are discussed, which lead to the

generation of radiation at even harmonics. A conclusion is presented in Section IV.

A. Quiver Model, Collective Effects and Detuning

The process by which relativistic effects produce coherent harmonic radiation may be

understood by considering a simplified "quiver" model, which includes only the effects of

the relativistic electron quiver motion. Other effects, such as the plasma density response,

will be discussed below. A linearly polarized laser field will be assumed, ao(z, t) = a0 cos 6o.

In the quiver model, the transverse plasma current is Jq = -enovq, where vq is the relativis-

tic electron quiver velocity (discussed above) and no is the ambient plasma density. The

quiver current Jq acts as the source term in the wave equation which drives the harmonic

radiation, (V 2 - &/c 2 & 2)a = S,, where

S' -k24 cos 0 o (1 + ± 0 cos2 o -/) , (2)

and w. = ckp = (4ire 2 no/M) 1/ 2 is the plasma frequency. In the limit i2 <« 1, the de-

nominator in Eq. (2) may be expanded and the component driving the Nth odd harmonic

(WN = Nwo) may be determined. For example, the ratio of the third harmonic power to

the fundamental is P5/Po = (a2okL/16ko) 2  R9, where L is the laser-plasma interaction

length and L < Ld has been assumed, where Ld is the detuning distance (discussed below).

Hence, in the quiver limit, P3 , L 2 n

The quiver model assumed that the plasma response is dominated by the electron

quiver motion. This is an oversimplification and collective plasma effects, i.e., the plasma

density response, cannot be neglected. Including the density response, bn(z, t), in the

transverse current gives J.L = -e(no + 6n)vj. Letting v.L = v. gives S = k2ao(1 + bn/no -
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24/2), where the term a 2/2 arises from expanding the relativistic factor, assuming a2 < 1.

Using ID cold fluid theory, the density response 6n may be calculated, giving

s~k2aocos00 1 _L_ 3 '- 6  aocos200o. (3)- 4 16 w02

Hence, the effect of including the density response is to reduce [7], [8] the source term

for the third harmonic, - exp(-3ieo), by the factor 3W2/4w2 < 1 as compared to the

quiver model. The power in the third harmonic will be reduced by the square of this

factor, P3/Po = Rq(3W2 /4wo 2 )2 . Hence, in the 1D limit, P3 - L2 n 4,0. Physically, this

reduction arises from the longitudinal ponderomotive force, F, - -V~a02 _ k0 20 sin 20o.

This modulates the density, bn/no - exp(±2i0o), in such a way that it nearly cancels (to

<• order w 0/wa) the contribution from the relativistic factor, ao /2. In the absence of the space

charge potential, w 2 -- 0, this cancellation is exact and no third harmonics are generated

in the 1D limit.

The harmonic radiation will reach a maximum amplitude after a detuning distance

[1], [19], [20], L = Lj. The phase velocity v. of an electromagnetic wave of frequency

in a plasma is given by vp/c ý- 1 + W 2/2W2 , where W1/W2 < 1 and a2 < 1 have been

assumed. The phase velocity of the incident laser, w = wo, is greater than that of the third

harmonic, w = 3w0 . Hence, the third harmonic, which is being driven by the incident

laser, eventually becomes out of phase with the incident laser. The maximum amplitude

of the third harmonic occurs after the detuning distance defined by LdAvp/c = A3/2, where

- 4cw2/9 102 is the difference in the phase velocities of the incident and third harmonic

fields and As -• Ao/3 is the wavelength of the third harmonic. Hence, Ld • 3A\/8A0 , where

A, = 27r/kp is the plasma wavelength. The maximum amplitude of the third harmonic

power at saturation may be estimated by setting L = Ld, giving P3 /Po !- (a0 A0/A,) 4 %.

Hence, P3 -noI- As an example, consider a A0 = 1I m laser with Io - 5 x 1017 (a0 -• 0.6)

and a plasma of density no = 10"9 cm-3 (A, Pt 11 /m). The third harmonic power is given

by P3 /Po = 9 x 10-8. The detuning length is prohibitively short, Ld = 45 /Am. The third

harmonic pulse length is approximately equal to that of the incident laser pulse.
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II. NONLINEAR FORMULATION

The 1D fields associated with the laser-plasma interaction can be described by the

normalized transverse vector potential, a(z, t) = eA.L(z, t)/mc2 , and the normalized scaler

potential, O(z,t) = e§(z,i)/mc2 . Coulomb gauge will be used, V A = 0, which implies

A, = 0. It is convenient to introduce the independent variables ý = z - c/tt and =t,

where fl is the normalized transform velocity which will be specified below. Using the -, 'r

variables, the normalized potentials a and 4, satisfy the ID wave equation and Poisson's

equation, which are given by

(1 & 2)9t 02 1 2 2 7
c, ~ p 1 = k 'a(4a, (4)

0324 k 2  n~ 1 (5)
at2 2 Pno

where yt2 =18-t, wP =ckp = (4re no/m)1 /2 is the ambient plasma frequency, n(t, 7)

is the plasma electron density, no is the ambient density, 7(•,T) = (1 -_ 2)-1/2 is the

relativistic factor associated with the plasma electrons and ,(t, r) = v/c is the normalized

electron fluid velocity. In deriving the right side of Eq. (4), use was made of the fact that

the transverse canonical momentum is invariant and that prior to the laser interaction

the plasma is assumed to be stationary, i.e., /A = a/7. Also, the ions are assumed to be

stationary.

The electron fluid quantities n, P. and -y are assumed to satisfy the cold, relativistic

fluid equations. Using the t, r variables, the continuity equation and the axial momentum

equation may be written as
S18(6a [n(fi - = "-n, (6)

[7(1 - 13i,) -' = 18-y), (7)
c O

respectively. Equations (4)-(7), together with 7 = (1 +a 2 )1 / 2 /(1 - #2)1/2, form a complete

set of fully nonlinear, relativistic cold fluid equations which describe the 1D laser-plasma

interaction. The 1D assumption is valid provided that the radiation spot size r. is large

compared to the plasma wavelength \,p = 2r/kp, i.e., r. >» Ap. The cold fluid assumption

is valid provided that (i) the electron quiver velocity is much greater than the transverse
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thermal velocity and (ii) the phase velocity of the driven plasma oscillations is much greater

than the axial thermal velocity, as is the case in the following.

The primary focus of this Section is to determine the coherent harmonic radiation ex-

cited by a long pulse incident laser field, crL »> Ap. To study coherent harmonic radiation,

it is convenient to set the transform velocity, /t, equal to the phase velocity, /ph, of the

incident laser field, 8t = 8 1,h. The incident laser field is of the form a0 = ao cos k0o, where

koe = ko(z - c#pht), Oph = Wo/cko is the normalized phase velocity, wo is the frequency and

k0 is the wavenumber of the pump laser field. The pump laser amplitude is slowly varying,

a0o/of.t - ao/crL, and is assumed to be independent of -r, i.e., pump depletion effects are

neglected. The effects of diffraction are consider in Section III. In determining the plasma

response to an incident laser field of the form ao = a0 (ý), the r derivatives are dropped

in Eqs. (6)-(7). Strictly speaking, for a general laser field of the form a0 = ao(, 'r), the r

derivatives may be neglected provided that the transit time of the electrons through the

laser pulse, rL (= laser pulse duration), is small compared to the evolution time, -r', of the

laser envelope, 7'L T< E, i.e., the quasi-static approximation [8]. Assuming a quasi-static

plasma response, Eqs. (6)-(7) imply the existence of two constants of the motion,

S- =.) fltno, (8a)

,(1 - AX.) -• = 1. (8b)

Equations (8a)-(8b) may be solved to give expressions for the fluid quantities n, 3 and -Y

in terms of the fields a and •,

n/no = "yt'p [(1 - 1WY? 1 2 - 1t], (9a)

S1 - /2(1 - 11€,2y•)1/21 (9b)

-Y = "yt2(1 + _)[1 -#/3(1 - 1/2_yt2)1/2] ,(9c)

n/"'no = + ,)-'(1 - l/o 2 -rY)-1 /2 , (9d)

where b2 = (1 + 0)2/(1 + a2 ). Notice that for the case =t = #ph, "-Y = f -2 < 0, since

#h > 1 for a radiation field in a plasma.
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Using the above expressions for the fluid quantities, expressions for the normalized

transverse plasma current, k 2na/no'y, and the normalized charge perturbation, k2 (n/no -

1), can be found and inserted into the wave equation and Poisson's equation, Eqs. (4)-(5).

This results in two coupled nonlinear equations for the potentials a and •,

(182 2#3t 2 1 _2__2

a, (10)
_(t 8 C O-Or C~o2 Or(1 € k2 2 8ý/a

• ''82 = k _yt 2 [,3t(1 - /,02,Yt)-1/2 _ 1].( 1
8ý2 22( 1

Equations (10)-(11) completely describe the nonlinear generation of relativistic harmonic

radiation in 1D within the quasi-static approximation, i.e., TL < rE. For the case where

the transform velocity, 1t, is set equal to the phase velocity, ph, of the incident laser, Eqs.

(10)-(11) may be used to analyze relativistic harmonic generation, as is done in detail in

the following. For the case where 8t is set equal to the group velocity, 8,, of a laser pulse

with a pulse length t- A,, Eq. (11) may be used to analyze laser wakefield generation

(5]-9]. The limiting case of 8t = 1 has been analyzed in detail in Ref. [8].

It is of interest to define the nonlinear index of refraction nR by setting the right side

of the wave equation, Eq. (10), equal to (w 2 /c 2 )(l - n2)a, which gives

1 1_+ 182) (12)W2(1+) kpt

In particular, the slow part of nR determines the dispersion relation for the radiation

field a, whereas the fast part of nR determines the generation of harmonic radiation, as is

discussed below.

A. Dispersion Relation

To describe the generation of relativistic harmonics, the electrostatic potential 4 is

separated into slow and fast components, 0 = k. + Of, where 0. is approximately constant,

I8&k./8fI 4 Iko0#, and I,00/ftI 1,04ko'I. The fast component of contains the harmonic

content and is important in determining the source current which drives the Nth harmonic

radiation. The slow component 0. is important in determining the dispersive character-

istics of the harmonic radiation as well as of the pump laser field. In the following, it is
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assumed that 02/(1 + .,0)2 < 1. Furthermore, it is assumed that the vector potential of

the harmonic radiation aN, where N is the harmonic number, is much less than that of

the pump laser, i.e., laNI/I•01 4 1.

The dispersion relation is determined by examining the slow part of the n2, Eq. (12).

Assuming I(kP-fPhY)-200,/8ý2 << 1, the dispersion relation for the radiation field, a, to

leading order (i.e., neglecting of), is given by

,,. ,/C2 = k2, +2k/(1 +€,,(3
CA; iv kP(13)

where a = iexp(ikt, z - iw, t) has 'u'een assumed with fi slowly varying compared to

the phase factor exp(ikz - iw,,t). Equation (13) holds for the pump laser field (wN =

wo,kN = k0 ) as well as for the various harmonics. Notice that the transform velocity is

the phase velocity of the incident laser field, Oph = Wo/cko, and, hence, -2' = 1 - 2=

- k/klo(1 + qS.) < 0. Furthermore, for a nonevolving, long incident laser pulse of the form

ao = ao exp(ikoz - iwot), the quantity (1 + 0,.) is approximately constant, as is discussed

in the following.

Consider a long pump laser pulse with a slowly varying envelope, 1fto/0eI - Ia0o/crLI,

where TrL is the laser pulse duration, propagating in a plasma with c-rL >> A,, A0. The

slow part of the potential 0, may be determined from examining the slow part of Poisson's

equation, Eq. (11). In the long pulse limit, 824,o/802 may be neglected and Eq. (11) implies

that, to leading order (i.e., neglecting of) [8], [21],

(1 + 0.) = (1 + &a2/2)1/2. (14)

In particular, notice that in the long pulse limit, crtL > ),,, 0 , propagation (i.e., real k)

requires w;/& 2 (1 + q,) < 1. This implies that for intense pump laser fields with &o > 1,

propagation in an overdense plasma in which w2/w 2 > 1 may be possible. Physically,
,y +,2 2 1/2,

= 1 +* = (1 + a/2)1/, and the reduction in the effective plasma frequency, W./ _Y ,

is due to the relativistic quiver motion of the electrons.

It should be emphasized that Eq. (14) only applies to the long pulse limit C1rL >

'\,? o. For rL = 1 psec, rTL > ,,p implies plasma densities no > 1016 cm-*. In the

short pulse limit, A,, > crL >> Ao, it can be shown [8], [21] that 14.1 < 1 provided
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CTrL < AP/(1 + a2/2)1/2. Physically, 14.1 <« 1 holds for pulses sufficiently shorter than Ap,

since N, is the characteristic length scale (in the t frame) for collective electron motion

(i.e., collective electron motion leading to charge separation and significant values of 4o

does not occur on time scales sufficiently shorter tlan 11wP).

B. Plasma Response

The source current driving the harmonic radiation is determined by the harmonic

content of nR. As indicated by Eq. (12), nit may be specified entirely in terms of 0.

Hence, it is necessary to determine the various harmonic components of 4'. This is done

by analyzing the plasma response to the pump laser field, ao = a0 cos k0o, via Poisson's

equation, Eq. (11). The various harmonic components of of= E0 - 2, where 02t "

cos(21kot) with I = 1,2,3..., may be determined analytically in the limit e = ki/k 2(1 +

0.) < 1. In this limit 10'2t/(l 4+ 0,)I - el, and the various harmonic components of of! may

be solved order by order in e.

To solve for of, via Eq. (11), two expansions will be used. Assuming I(OYph)- 2  _• C,

gives

1 __1 = _ (2t- 1)1!! (
,02 2 E (21)!! 7 (15a)

where (21- 1)!" 1 .3.....(21- 1) and (21)!! = 2.4.....(21). Assuming 140f/(+ 4+ 0.) 1-

gives

)1 [(1+a2) 21(21 + 1)...(21+m - 1) [ O- ] (15b)
02--y2 --") E M!

Letting ofj = ZI 021, where 4'02 - e cos(2Wkot) for I = 1,2,3..., and using the expansions

in Eqs. (15a) and (15b), allows 021 to be solved order by order in e. For example, '02 (order

e), 04 (order e2 ) and 4s (order c') are given by

C2 k2 02(a 2)2 3(a)

1(+) 04 -- 01+±0)4] (16b)

tqý• 2 P I (1 +,0.)3 8-fp (i +0.)4
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t2 -k(a.o) 2  3022 3(ao2 , 5(a2o)2 ]
ý-( 2 0 •4-4 - 2(1+0,) + 2 h(1 + 0,)2 2  24 (1 + 0,)2 (16c)

2(1+41.) 2h(1+ 41,)

where the subscript (Q)t refers to the I'• harmonic component of Q, i.e., (Q)t '- exp(fkoý).

These equations can be solved iteratively to yield

k 2ao-2 cos 2koý
12= - 1 k os(+k0 , (17a)

162(1 + 0.)2'
k' a4 cos 4koý

k04°= k 0  (17b)

42'k(1 ± 41)5,

17k& z cos6kof

9.6= 214 k6 (1 + 1.)" (17c)

For order of magnitude scaling purposes, Eqs. (17a)-(17c) imply that the 2&th harmonic

component of of scales as

1021 (-1) _2_- 1 k\ 21 a=0 cos2tk0(

(21)!! I2ko) 2e2(12+ +,)31-1 (18)

Knowing the harmonic components of of, it is possible to determine the harmonic

components of the source current S which drives the harmonic radiation. The source

current S is given by the right side of Eq. (10),

S 1 + 1 02 " (19)

(I1+ 0) kp2.Yph82 ,J*(19

Using the expansion

(+ (1 + •_-Of__(_,I + .4-,-],n (20)
mn=O

allows the harmonic components of S to be solved order by order in C. For example, the

third, S3, fifth, S5 , and seventh, ST, harmonic components are given by

k2 a 4102 1 824121
S3 =ý, + [- - 2 (21a)5s-(1+4-1.) (1 + I) k+ y kl2J - J' 2

-k5a 0 21 1 (80244 42 024 12S-(1±1) 1(1 +4) (1+4T.)2 -k2~-h 8 (1+41.) •82 (21b)

10



,L. ---(1 + .)), ((1++q5) ) (1+ .))s)(1 + ?]}
2 ~

1 1062 &2•b (1 02) (192 -02•-
k2.yP1,82 (1 + 8,, O2 1+0. 1+02 "ý

Using Eqs. (17a)-(17c) give

= 3kP4 oL cos 3koý
S 3 2 0 (22a)

s- = 3k~& cos 5ko22S o( = P b) ' (22b)
S2sk4(1 + 0,)7

57 = 5kat& cos 7ko0
S7 21 k(1 + 0 )1o (22c)

For order of magnitude scaling purposes, Eqs. (22a)-(22c) imply that the (2e + 1)"' har-

monic component of S scales as

22+ 1(2- 1)!! 21 )t,2(+ cos(2 + 1)ko2 3
1(21)!! -2k-o 0 1(1 + .)31+1 (23)

C. Harmonic Radiation

The above expressions for the harmonic components of the source current, S21+1, may

be used in the wave equation, Eq. (10), to determine the growth and saturation of the

relativistic harmonic radiation. It is convenient to represent the Nth harmonic radiation

field, a., by the form

a. = aN, (r) exp (ikN,- iAwNr), (24)

with Awi, = W,- -PhckN, and kN, - AwNr = kNz - WfNt, where k. and wN are the

wavenumber and frequency of the N th harmonic radiation field. Inserting this into Eq.

(10) gives a reduced wave equation for the harmonic amplitude tN,

= -c aN exp(iAwN r), (25)

where wN and ki, satisfy the dispersion relation, Eq. (13), with kN = Nko and N =

21 + 1. The amplitude of the source current for the Nth harmonic, S ,7 is given by SN =

SNexp(iNko4), where SN is given in Eqs. (22)-(23).
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The reduced wave equation, Eq. (25), has the solution

&N n _c [exp(iAwwNr) - 1] (26)
(W2 - C2,82 k2~

where
2 _ 2#2 2 C2 kP2N, - P,-hWN (1 + €.)~~ 1N ). (27)

For small times IAWN rl < 1, the harmonics grow linearly in time [8],

a .N - .c (28)

The Nih harmonic reaches its maximum amplitude [1], [19], [20] after a dephasing

length c7-dN = 7rc/I A1w I, where AwN - ckN(0.1 - #ph) and fl, = wN /ckN, i.e.,

AW = Nclo 1(i+ N p2~ 1,) + i 2 l.. ,~ (29)

For k./k2(a + 0') < 1, Eq. (29) may be expanded giving

N A2(1 + €)(0
CTd_ (N 2 

- 1)0 (30)

The maximum amplitude of the Nth harmonic at cr = crd, is given by

2ISw (1 + O,) (31)
k2(N 2 -1)

In particular, for the third, fifth and seventh harmonics,
23 a

3kpa° (32a)
lasim.: = p 03

kp4 a (32b)
210 k0(1 + 0,)6'

5pao (32c)
ka213mau = 92k + 0.)

An order of magnitude expression for the maximum amplitude of the (2f + 1) harmonic is

given by

I&21+l1mnu 2(21 - 1)!!(kp/2ko ) (33)
1&"1(21)!! [(2t + 1)2 - 11(1+ )31

12



Equations (32)-(33) are valid for all &o, including 0o > 1. It is easily verified that

jaj, Im. <« &0. A plot of the harmonic radiation amplitude IaN I verses the normalized

propagation distance cr/Ao is shown in Fig. 2 for the first three harmonics for the pa-

rameters A0 = 1 Am, AP = 3.4 Am (no = 1020 cm') and &0 = 2.2 (Io = 6.7 x 1018

W/cm2 ).

At saturation for the N"h harmonic, i.e., cT = CrdN, the ratio of the power in the

N'h harmonic, P, to the power in the pump radiation field, Po, is given by PNI/Po

N2 Ia 12/a2. Using Eqs. (32)-(33), this can be written as

PN€ 0 / (34)

where CN are constants which decrease rapidly with increasing harmonic number, i.e.,

Cs = 4.9 x 10-3, CS = 2.4 x 10' and C7 = 2.3 x 10-7. Furthermore, driven relativistic

harmonic generation is a nonresonant interaction; hence, the process is not sensitive to

thermal plasma effects.

As an example, consider an incident laser with Po = 10 TW, \ 0 = 1 Am and spot size

r0 = 10 Am (so = 2.2), interacting with a plasma of density n0 = 1020 cm-3 (,\p = 3.4

JAm). For the third (and fifth) harmonic, PN/PO = 2.2 x 10- (4.6 x 10-10) and Ld = 8.0

JAm (4.3 Am). Hence, 220 MW (4.6 kW) should be observed at a wavelength of ,\ = 3300

A (2000 A). Clearly, the limitations due to phase detuning are restrictive. If a scheme for

phase matching could be conceived, the interaction distance, L, and thus the harmonic

power, PN - L 2 , could be increased.

13



III. DIFFRACTIVE EFFECTS

The above nonlinear theory indicates that the Nth harmonic saturates (i.e., reaches
maximum amplitude) after a detuning distance crd, = rcl I Aw 1, where AwN = ckN (i3• -

,8,h). In particular, for the third harmonic, crd, :-- 3l(1 + 0!,)/8, 0 . Physically, saturation

by detuning arises due to the fact that the phase velocity of the fundamental pump radi-

ation is greater that than the phase velocity of the harmonic radiation, i.e., Op, > fl, In

a realistic 3D configuration, however, diffractive effects will limit the effective radiation-

plasma interaction length to a few vacuum Rayleigh lengths, ZR, where ZR = koro/2

and ro is the minimum spot size of the radiation field (assumed to be Gaussian). For

interaction distances L <- 7rZR, diffraction effects are unimportant and the ID theory is

an adequate description. In the limit 7rZR < L, however, and in particular 7ZR •S CTdr,

diffractive effects are important and must be included in the analysis.

In the following, the generation of second and third harmonic radiation is analyzed

using 3D relativistic fluid equations in the limit a0 < 1. Higher order harmonic generation

can be consider by solving the fluid equations to higher order in a2. Furthermore, the

radiation fields are assumed to undergo vacuum diffraction. Notice that in the regime

in which 3D effects are important, the condition 7rZR < crd, implies . = 2k'r2/3 < 1.

Hence, the effects of relativistic optical guiding [3]-[10], which become important when

P/Pc= kr•o"2&/32 > 1, may be neglected in the 3D regime when &02 < 1. Assuming

vacuum diffraction, a long pulse, Gaussian, incident radiation field evolves according to

a(r, z, t) = a , exp i60 , where 00 = koz - wot and the radiation envelope a, is given by [24]

a,,(r,Z) = exp -(1 -i)! -itan- , (35)
r, I J r

where r, = r0(1 + C2 )1/2 is the radiation spot size, a = Z/ZR and z - 0 is the location of

the laser focus at which r, = ro.

A. 3D Formulation

The 3D pump laser interaction with the plasma electrons will be modelled using the

cold, relativistic fluid equations. In particular, the momentum equation and the continuity

14



equation may be written as

ld 189 1
W--u- VO+ -5ia- -u X (V x a), (36)

cdi ct 7

1-(p-1)+ V-(PU) =O0, (37)
c at

respectively, where u = p/mc is the normalized momentum,-y = (1 +uI)1/ 2 is the relativis-

tic factor, and p = n/(no-). The evolution of the normalized potentials are determined

from the wave equation and Poisson's equation, which may be written as

( V 2  a = kPU+-V., (38)

V 24' = k2(py-1), (39)

respectively, where Coulomb gauge, V • a = 0, has been assumed.

To study the generation of the third harmonic, the above equations will be solved

perturbatively, i.e., order by order in the pump laser amplitude &o, assuming ti• 2< 1.

The various plasma quantities, denoted by Q, will be represented by an expansion Q =

Qo + Qi + Q2 + ... , where Qn - a'. The pump laser vector potential is assumed to be

known and given by ao_. = a, expi00e., where a,(r,z) is the vacuum solution given by

Eq. (35). The effects of pump depletion and of various laser-plasma instabilities will be

neglected. The zeroth order plasma quantities (in the absence of the pump laser) are given

by uo = 0, -o = 1, p0 = 1 and •0 = 0, i.e., the plasma is assumed to be initially uniform,

stationary and neutral. To first order in the normalized vector potential, Eq. (36) implies

that ul = a0 , which is simply the quiver motion of the electrons. Furthermore, Eqs. (36)-

(39) imply P, = 7'i = 01i = 0. The first order form of the wave equation, Eq. (38), implies

that the pump laser field obeys the dispersion relation wo/c 2 = ko + k.

To second order, Eqs. (36)-(39) imply that quantities 02, u 2 and P2 are related to a20

by

(102 2 1"k-2 o (40a)

( + + -k2 , (40b)

" 2P2- V2 &2 k2 (40c)
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Furthermore, Eqs. (40a) and (40c) imply that the second order wave equation describing

the generation of the second harmonic may be written as( CV2 _ k 2 a2  = 0. (41)

Hence, no second harmonic radiation will be generated.

To third order, Eqs. (36)-(39) imply that qiantities 03 and U 3 are related to ao by

(2 4 +k) P2 s =kP [V2(aO.u 2 )- c "V(aOP2 )] (42a)

C U = V03 - V(aO . u 2 ), (42b)

Furthermore, the third order transverse wave equation, describing the generation of third

harmonic radiation, is given by
c2 _ 1 V±-03_ (43)

c-T12 6 = kPa0±kpu 3
j2_ P ) = +c V S

where (...),. signifies the n 1 harmonic component.

In particular, to determine the source term driving the third harmonic radiation, it is

necessary to determine the fast (i.e., third harmonic) components of 0s and Us. Assuming

103, U3 -, exp 3ieo, Eqs. (42a) and (42b) imply

03 A (SL --U-•2("u)3, (44a)

us -- V(ao . u 2 )s, (44b)

where terms of order k2/ko < 1 and 1/r2k 2 1 have been neglected. It can be shown

that the leading order contributions of each of the three terms on the left side of Eq. (43)

are of the same order. However, to leading order, k2u 3 1 + V1 00qs/3ct = 0, and, hence,

the wave equation describing third harmonic generation is given by

,V2 192 2 2
( N k- a31 = k,(p2a0±)s, (45)

where higher order terms (of order k2,/4k2 and 1/r2k2) have been neglected. The transverse

wave equation, Eq. (45), along with the second harmonic component of P2,

+k P2= (V (a)2 (46)16 2 R P 2
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completely determine the generation of third harmonic radiation in 3D in the limit a2 « 1.

B. Third Harmonic Generation

The pump laser is assumed to be a long pulse, Gaussian laser beam which is diffracting

according to the relation ao (r, z, t) = a. exp iPo, where a,(r, z) is the envelope given by Eq.

(35) and o/C 2 -= + lo. Using this form in Eq. (46) gives

P2 1 [3r0 2+ k 1 + a exp M2io. (47)

8 0  P li)aePU

Hence, the source term driving the third harmonic radiation is given by

k2 :.' _ r3 2 1 3
k(p 2 ao)- [2r~ k+ + l)] alVexp3ie0. (48)40 0o (1 +

It is convenient to denote the third harmonic radiation field, av3 (r, z, t), by the fol-

lowing form,

as(r,z,t) = f(z)as(r,z)expi s, (49a)

a06s(z,r) =- exp -(1 - ias)-r -itan- 1 0 , (49b)

where 03 = 13 z - Wat, W3 and k3 are the third harmonic frequency and wavenumber,

r.3 = r3(1 + a2)1/ 2 is the third harmonic spot size, a 3 = z/ZRS, ZRs = ksr3/2 is the

Rayleigh length associated with the third harmonic, and w3/c 2  3l + iP. Inserting this

into the wave equation, Eq. (45), gives

9?ik3a, ,exp(i63)-f = k2 (Pao ), (50)

where the right side is given by Eq. (48). Letting Ws = 3w0 and r 2 = r 2/3 implies ZR3 = ZR

and

f 24!r[3 2ko 2  + (1 -_ _) 'p(iAl-z) (51)

where Ak = 3ko - k3 = -4k'/3ko.

For a pump laser pulse which interacts with a uniform plasma extending from zmin <

z < z,..., Eq. (51) can be integrated giving

f = I hDI [h(6, cm,.:) - h(b,amn,,,,)], (52a)
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4 f b 1 ) eia b 5b

h(b,a) - -9 + (1 -- (1 + ia) J _8 e6 E1 [6(1 + (52b)

where IfiDI = 13ao&k2/2 k21 is the maximum amplitude of the third harmonic in the ID

limit, 6 = lAkIZR = 2k~r02/3 (6 = 7rZR/crd3 ), imin = Zmin/ZR, tmaz = z,•mz/ZR and El

is the exponential integral.

In particular, consider a finite slab plasma centered about the focal point of the pump

laser (chosen to be z = 0) which extends from Zmin = -Zo to Zmaz = ZO. The amplitude

function f of the third harmonic signal emerging from the slab plasma at z = z0 is given

by

f = 21flDIIm [h(6, ao)], (53)

where Im [h(6,ao)] is the imaginary part of h(6, ao) and ao = zo /ZR. The ratio of the

third harmonic power to the pump laser power is given by
ps/po =W2 2112 2a2 I 1 /

"P3r3/ o 0 = 31f02/ao. (54)

Hence, for a slab plasma centered about the laser focus, P 3 - 4JIm [h(6, ao)] 12 A plot of

the function H(b,ao) = 41Im [h(6,ao )I 12 verses the normalized plasma slab width, a 0 , is

shown in Fig. 3 for 6 = 0.1, 1.0 and 10.0. Notice that for 6 = 10.0 (C'd3 << -ZR) and

aO <t 1, the first peak, which occurs when the slab width is equal to the detuning length,

2zo = •rd 3, is close to the 1D value of H(6,ao) = 1. For 6 = 0.1 (crd 3 > 7rZR), the

maximum amplitude of the third harmonic occurs for a plasma length of :- ZR, at which

H(6, ao) = 1/3. In the limit of a slab plasma with a spatial extent large compared to

ZR, i.e., zo > ZR (a0 >. 1), f --+ fl, where fi = Ifl>ao 2 sin(6ao). Hence, fj -* 0 as

a0 --* 00, i.e., the third harmonic radiation emerging from a plasma centered about the

laser focus vanishes for plasma dimensions large compared to ZR. The conclusion that

no third harmonic is generated by an infinite medium is also the case for third harmonic

generation due to the nonlinear susceptibility associated with bound electrons [25].

A finite third harmonic signal, however, may be detected by focusing the pump laser

on the trailing edge (z = 0) of a plasma slab extending from z ,,i,, _ z _< z,. = 0, with

dimensions large compared to ZR, i.e., z,,, < -ZR. In practice, this may be achieved by

focusing the pump laser pulse on the trailing edge of a pre-ionized gas get. Approximating
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ai "= -o0 and acta. - 0 gives f = fs, where

fs 2a0 [1 + g(8)] (55a)S96k20

g(6) = (b/8) [1 - e6 E,(b)]. (55b)

Furthermore, it can be shown that 0 < 1 - We6EI(b) < (1 + b)-1. Hence, g2 < 1 and may

be neglected. The amplitude of the third harmonic emerging from the plasma is given by

lasl = IfsIlaasl. At the laser focus, this is a factor of 4/9 smaller than that obtained from

the ID theory in the limit &0• < 1. Hence, for a semi-infinite plasma including the effects

of diffraction in the limit C0 <« 1, the ratio of third harmonic power to the pump laser

power, P3 /Po = 3IfSI/ik', is given by

Ps/Po - 3 x 10- 4(o&o /,\P) 4 , (56)

which is a factor of (4/9)2/3 "" 1/15 smaller than the corresponding 1D expression for the

maximum power.

C. Second Harmonic Generation

The above results indicate that for an initially uniform plasma density, no second

harmonics are excited. This is true even when the effects of a finite incident laser spot size,

ro, and the transverse gradients associated with self-consistent 3D density perturbation

are included, i.e., Eq. (41). Generation of even harmonics requires that the plasma have

initial transverse density gradients prior to the arrival of the incident laser, i.e., Vin o # 0,

where n 0 (r) is the initial plasma density profile. Electrons undergoing quiver motion

in the presence of a density gradient produce density oscillations. For a pump laser of

the form a0 = &0 cos o e., the continuity equation, to first order in o <« 1, implies a

density oscillation 6n1 of the form bni i (0&o sin o)V~no/ko. This produces a source

current S2 = k2(bnl /n 0 )i 0 cos ,- sin 200 which drives the second harmonic radiation.

The amplitude of the second harmonic radiation may be estimated by approximating the

density gradient by V.no = -no/rp, assuming r; > ro and neglecting the effects of

diffraction. At saturation, i.e., after a detuning length Ld =- 22,/3,\0 , the amplitude of

the second harmonic is given by 0a21 • &o/3korp. The ratio of second harmonic power
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to pump laser power is P2 /Po c- (aoAo/rp )2 % and, hence, P2 - I02. Not only do initial

density gradients lead to the generation of even harmonics for linearly polarized incident

lasers, it also implies that circularly polarized incident lasers will generate harmonics, both

even and odd.

Transverse plasma density gradients can occur when a Gaussian laser pulse produces

intensity-dependent ionization of a neutral gas. For laser pulses with peak intensities

Io > Is (where Is is the saturation intensity for which the gas is fully ionized) ionizing a

uniform gas, density gradients will exist in the "halo" region about the laser focus. This

halo region is the portion of the interaction region in which the gas is not fully ionized and

corresponds approximately to focal regions in which the laser intensity lies within the band

I,,.j,• < I < Is (where ', is the minimum intensity required to produce ionization). As

the peak intensity, 10, increases, one can show that the volume of this halo region increases

as 4/2, where a Gaussian laser pulse of the form given by Eq. (35) has been assumed

(i.e., a spherical lens and a double cone focal geometry) [26]. Second harmonics will be

produced from the halo region. The intensity scaling of the second harmonic power with

peak intensity will tend to be dominated by effects associated with the increasing volume

of the halo region. Hence, for I0 > Is, the volume effect implies a second harmonic power

scaling of P2 _ 3/2. Furthermore, in the partially ionized halo region, the production of

harmonic radiation can be significantly enhanced and/or dominated by atomic [13] and

ionization [14] processes [17], [181. In long-pulse laser-plasma experiments, filamentation

may be a dominant mechanism in second harmonic generation [15], [27].
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IV. CONCLUSION

A nonlinear cold fluid model valid in the regime iX2 > 1, given by Eqs. (10) and

(11), has been formulated aund used to analyze relativistic harmonic generation. The self-

consistent collective plasma response is included and shown to significantly reduce the

source current driving the harmonic radiation. A general expression for the nonlinear

index of refraction was derived, Eq. (12), and is a function of only the electrostatic (space-

charge) potential of the plasma, 0. The slow part of the index of refraction determined

the dispersion relation, Eq. (13), and the fast part determined the source current for the

harmonics. Saturation of the Nih harmonic occurs after a detuning length, LdN, = CrdN,

given by Eq. (30). The harmonic amplitude is maximum when the laser-plasma interaction

length, L, is an integer multiple of Ld,. The ratio of saturated power in the NWh harmonic

to that in the incident laser is given by Eq. (34). This expression is valid for long lasers

pulses, C'L > AP (no > 1016 cm-3 for rL !-- 1 psec), and for interaction distances short

compared to the diffraction length, L <7rZR. Relativistic harmonic generation favors the

use of high densities and intense lasers, &0 ", 1. The saturated power given by Eq. (34),

in the limit til < 1, is a factor of bN(Ao/A•,)2(N-1) smaller, where bN are constants, than

that predicted by the simplified quiver model, which neglects the self-consistent plasma

response. This reduction in the harmonic power by collective plasma effects is supported

by recent experiments on harmonic generation in pre-ionized plasmas [2], [17], [18].

The effects of a diffracting incident laser field with a finite spot size r0 have been

analyzed in the limit ig2 < 1. Diffraction is important for interaction lengths L > WZR

(Ld, Ž_ 7ZR implies 6 = 2kr2/3 < 1 for the third harmonic). It is shown that no third

harmonic signal emerges from a plasma of near infinite extent. A finite third harmonic

signal requires the use of a semi-infinite or finite slab plasma. The third harmonic power

emerging from the edge of a semi-infinite plasma, which corresponds to the focal point of

the incident laser, is given by Eq. (55) and is a factor of 15 smaller than the corresponding

1D saturation power. No second harmonics are generated from an initially uniform plasma.

The generation of even harmonics requires the existence of transverse gradients in the initial

plasma density. Circularly polarized light will also generate both even and odd harmonics

when initial transverse density gradients are present.
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The most severe constraint on the production of coherent relativistic harmonic radia-

tion is that of phase detuning. In a dense plasma with no = 1020 cm-3 (A• = 3.4 /rm) and

a A0 = 1 Am laser with Io = 6.7 x 10"s W/cm2 (0o = 2.2), the saturation efficiencies for the

third and fifth harmonics are P3 /Po = 2.2 x 10-5 and P5/Po = 4.6 x 10'1, respectively.

At such a high density the detuning lengths are extremely short, Ld 3 = 8.0 Am for the

third harmonic and Lds = 4.3 Am for the fifth harmonic. If a scheme for phase matching

could be conceived, the interaction distance, L, and, hence, the harmonic power, PN "- L

could be dramatically increased.
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Fig. 1: Schematic of an intense laser interacting with a plasma to produce coherent relativistic

harmonic radiation in the forward direction.
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Fig. 2: The amplitude of the normalized vector potential of the harmonic radiation, la, 1, for

the first three harmonics, N = 3, 5, and 7, verses the normalized propagation distance,

cr/Ao, for a Ao = 1 ism wavelength laser of intensity Io = 6.7 x 10'a W/cm 2 (no = 2.2)

interacting with a plasma of density no = 1020 cm-3 (Ap = 3.4/•m).
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Fig. 3: The function H(6,ao), proportional to the third harmonic power emerging from a

plasma of width 2zo centered about the laser focus, verses ao = zo/ZR, for 6 =

20 r2 /3 = 10.0 (solid curve), 1.0 (dashed curve) and 0.1 (dotted curve), where ZR =

k0rO /2 is the Rayleigh length.
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